BOUSSOLE Monthly Cruise Report

Cruise 34 July 05 – 07, 2004

Duty Chief: Alec Scott (alec.scott@obs-vlfr.fr) Vessel: R/V Téthys II (Captain: Rémy Lafond)

Science Personnel: Alec Scott, Dominique Tailliez, Guislain Becu, Davey Merien, Marc Picheral, David Luquet, 2 divers

Laboratoire d'Océanographique de Villefranche (LOV), 06238 Villefranche sur mer cedex, FRANCE

Fig 1. A typical scene at the buoy site where fishing boats trawl past as close to the buoy structure as possible.

BOUSSOLE project

ESA/ESRIN contract N° 17286/03/I-OL

Deliverable from WP#400/200

December 2, 2005

Foreword

This report is part of the technical report series that is being established by the BOUSSOLE project. BOUSSOLE is funded and supported by the following Agencies and Institutions

European Space Agency

Centre National d'Etudes Spatiales, France

National Aeronautics and Space Administration of the USA

Centre National de la Recherche Scientifique, France

Institut National des Sciences de l'Univers, France

Université Pierre & Marie Curie, France

Observatoire Océanologique de Villefranche sur mer, France

Contents

- 1. Cruise Objectives
- 2. Cruise Summary
- 3. Cruise Report
- 4. Boussole Site Satellite Overhead Pass Schedules
- 5. Satellite Colour Images of Ligurian Sea Boussole Site
- 6. Calculated Swath paths for Meris Sensor
- 7. Tabulated Cruise Summary
- 8. CTD Data

Cruise Objectives

Multiple SPMR profiles are to occur within 1 hour of satellite overhead passes of SeaWiFS and MERIS and around solar noon. Optimal conditions: Clear blue skies and flat, calm sea surface. If the sky is clear and sea conditions are reasonably calm (no whitecaps or large swell), SIMBADA measurements are to be performed consecutively where possible with SPMR profiles. If sea conditions are poor but sky is good, SIMBADA sun photometer measurements can be made at intervals throughout the day to measure atmospheric optical thickness. A floating platform is to be used to support the SPMR Eu sensor approximately 20cm below the surface for up to 3 minutes of stable light field before a release mechanism triggers the release of the profiler to start a descent as normal. Multiple descents ideally will be started in this way and the data will be used to assess near-surface Eu extrapolation model calculations. CTD deployments are required at the start and end of the SPMR profiling day and around noon in the longer summer days or when there is a high possibility of a satellite matchup. In addition to the depth profile from the CTD, CDOM fluorometer, Chl fluorometer and AC9, seawater samples are to be collected, filtered and stored in LN2 for HPLC pigment and particule absorption spectrophotometric filter analysis in the lab. A gimbled PAR sensor positioned on the foredeck and operated from the CTD computer serves as a light field stability indicator during SPMR profiling.

For each cruise, at the end of the optics measurements on site, there will be one ctd transect between the Boussole site and the Port of Nice. This transect consists of four fixed locations on-route from Boussole and a final two station positions to be decided during the transect in order to sample on both sides of the main frontal structure between the coastal waters and Ligurian Sea. The time of day of this transect should be similar for each cruise, if possible to minimise influence of diurnal variability.

Additionally to Alec Scott and Dominique Tailliez, Davey Merien will be assisting Mr Tailliez with CTD operations in order to establish an efficient protocol for processing the data from the AC9. Guislain Becu, the newly recruited engineer for Boussole, will be participating on the cruise to be trained up on protocols so that he may eventually take over the responsibilities of Alec Scott

Three CNRS divers will be aboard to check on the physical state of the buoy below the surface, providing underwater photographs and cleaning the sensors. They will also bring to the surface the emergency Argos beacon so that it might be tested on deck by activation then cleaned up before being fixed back into position.

Other activities will also be performed on the buoy to download the data off the buoy and verify that everything is as expected above the waterline. The solar panel which was found damaged two weeks earlier will be disconnected from the buoy system to avoid the risk of electrical faults in the case that water penetrates into the circuitry.

Cruise Summary

Monday 5th July

Departure was later than the planned 07h30 because loading time and returning the boat trailer to Villefranche took longer than expected. Further delays were then caused by the Corsica ferry manoeuvring in port at the same time.

In the absence of any Argos communication for almost two weeks, it was a relief to find that the buoy was still there and seemingly normal. The diving operations were the first activity with the objectives of filming and photographing underwater, cleaning the optics sensors and finally removing the emergency argos beacon for ondeck testing. The operation was a success in all respects. No further problems with the buoy system were reported although it was confirmed that there was evidence of a heavy impact on one of the main vertical tubes at around the 4m depth. The 4m arm was reported as missing but this is the same arm that was removed by Alec Scott three weeks ago during a mission on the Sailing Vessel Sacanagem.

Three profiles with the SPMR and one for the CTD were performed for matchups with Modis and SeaWiFS overhead passes at 1013 and 1239, respectively. The divers went back to the buoy to replace the argos beacon and continue with the photography. Once completed, Alec Scott and Guislain Becu climbed on the buoy to download the data. This was successful although the test of the buoy to take the weight of two people proved that one person is the limit. A broken solar panel discovered 2 weeks earlier was disconnected and dummy-plugged.

Two SPMR profiles were performed down to 150m followed by a CTD profile before the ship departed for Nice.

The conditions for the day were very hot and humid with clear but milky skies and very calm seas.

Mardi 6 juillet

Despite a punctual departure, arrival at the Boussole site was slightly delayed because of a mechanical problem with the ship during transit. However, conditions were very good with a clear sky that was slightly bluer than that of the previous day. The sea was once again very calm.

After the CTD profile, there was time for 2 SPMR profiles, one using the surface float and all optimising on the ideal conditions and a Meris pass. After the break for lunch, the sky was partly cloudy making the timing of profiling critical to avoid disturbances in the light field. Using the surface float, some high quality profiles were achieved.

Mercredi 7 juillet

The weather conditions were overcast with wind blowing 12 to 15 knots. After the dark measure of the radiometers, the deckbox unit was found with a short warning light indicated in the reference. After restarting deckbox, the profiler side indicated an open fault but no short was indicated. After several repetition tests, both instruments worked okay if the other was disconnected. Once both instruments were connected, the profiler showed open fault and both telemetry and frame sync green LEDs lit continuously.

The CTD had a data overflow problem which was corrected by Mr Tailliez but the ISUS nitrate sensor and AC9 were not able to be used. In addition, the underwater video recorder of Mark Picheral had technical problems so was unable to be tested as planned. Due to excessive biofouling on the flow system of the thermosalinograph causing problems with the pump, this data was not collected during the final day.

Numerous fishing boats were seen passing within a few meters of the buoy on each of the three days. A high abundance of fish was also seen in the region, including bonita. Long finned pilot whales were observed during the transit back to Nice on the second day.

Cruise Report

5th July, 2004 (Times UTC)

- 0605 Depart port of Nice
- 0935 Arrival at Boussole Site (43°22'N 7°54'E).
- 0950 Divers in water
- 1055 Divers back on deck
- 1125 SPMR in water
- 1210 SPMR on deck (3 profiles + Meris 1013 + SeaWiFS 1239)
- 1227 CTD Boussole 1. Max 400m. Bottle depths (m): 200,100,70,60,50,40,30,20,10, 5.
- 1257 CTD on deck
- 1255 Divers in water
- 1330 Divers on deck
- 1331 SPMR in water
- 1345 SPMR on deck (2 profiles)
- 1445 Alec on buoy to recuperate data
- 1559 CTD Boussole 2. Max 400m. Bottle depths (m): 10, 5
- 1625 CTD on deck
- 1630 Depart for Port of Nice
- 1940 Arrival in Port of Nice

6th July, 2004

- 0430 Depart port of Nice
- 0830 Arrival at Boussole Site (43°22'N 7°54'E).
- 0905 CTD Boussole 3. Max 400m. Bottle depths (m): 200,100,70,60,50,40,30,20,10, 5.
- 0905 CTD on deck
- 0915 SPMR in water
- 0925 SPMR on deck (1 profile + Meris 0941)

- 0940 SPMR float in water
- 0958 SPMR on deck deck (1 profile + Meris 0941)
- 1205 SPMR float in water
- 1302 SPMR on deck deck (5 profiles + SeaWiFS 1143)
- 1330 Start of quadrilateral
- 1430 End of quadrilateral.
- 1437 CTD Boussole 4. Max 400m. Bottle depths (m): 10, 5.
- 1539 CTD Boussole 5. Max 400m. Transect Station 1 (43°25'N 7°28'E).
- 1641 CTD Boussole 6. Max 400m. Transect Station 2 (43°28'N 7°42'E).
- 1806 CTD Boussole 7. Max 400m. Transect Station 3 (43°31'N 7°37'E).
- 1921 CTD Boussole 8. Max 400m. Transect Station 4 (43°34'N 7°31'E).
- 2028 CTD Boussole 9. Max 400m. Transect Station 5 (43°37'N 7°25'E).
- 2115 Arrival in port of Nice

7th July, 2004

- 0430 Depart port of Nice
- 0745 Arrival at Boussole Site (43°22'N 7°54'E).
- 0848 CTD Boussole 10. Max 400m. NEED TO CONFIRM WITH DOMINIQUE.
- 0917 CTD on deck
- 0920 SPMR session experienced electronic faults.
- 0930 Underwater video recorder test in water for testing
- 1000 UVR back on deck test failed.
- 1130 SPMR tested but failed
- 1145 UVR tested but failed
- 1345 TO CONFIRM WITH DOMINIQUE
- 1350 Depart for Nice
- 1715 Arrival in port of Nice

Boussole Site Satellite Overhead Pass Schedules

SeaWiFS: Viewing Times Date Time Lat Lon Sat. Sat. Range Sun Sun Tilt Flags* (UTC) (DEG) (DEG) Azi. Elev. (km) Azi. Elev.

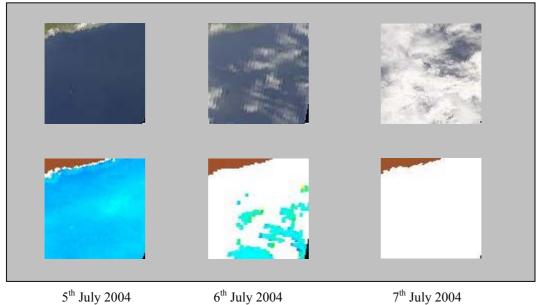
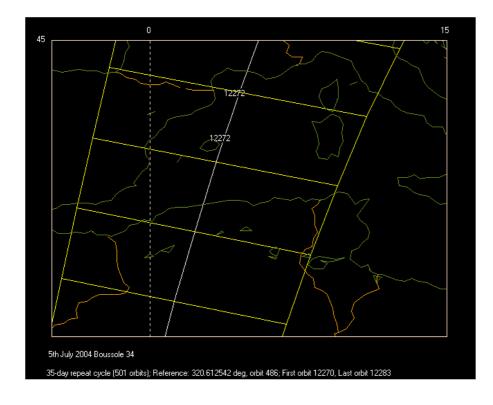
05 Jul 2004 12:39:44 43.220 7.540 251.44 54.57 839 218.58 65.46 AFT 2 06 Jul 2004 11:42:27 43.220 7.540 116.67 34.52 1127 185.11 69.35 AFT 2 06 Jul 2004 13:19:53 43.220 7.540 279.71 24.35 1413 235.00 60.05 AFT 2 3 07 Jul 2004 12:22:46 43.220 7.540 198.59 67.96 749 209.46 67.04 AFT 2

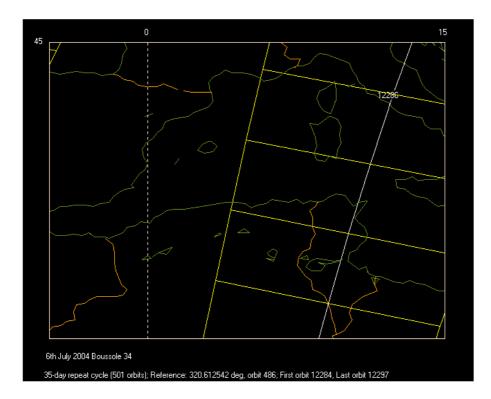
MERIS: Viewing Times Date Time Lat Lon Sat. Sat. Range Sun Sun Tilt Flags* (UTC) (DEG) (DEG) Azi. Elev. (km) Azi. Elev.

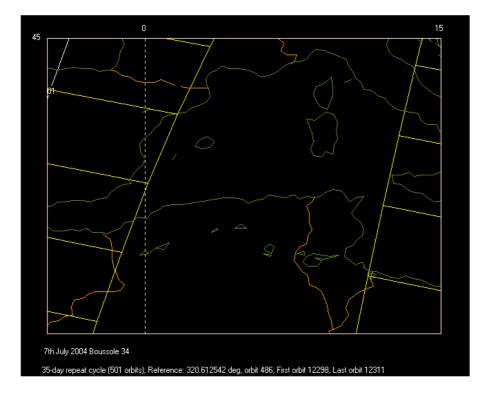
05 Jul 2004 10:13:07 43.220 7.540 287.46 73.04 822 134.10 63.50 NADIR 4 06 Jul 2004 09:41:52 43.220 7.540 100.52 59.29 902 122.39 58.92 NADIR

Ligurian Sea Boussole Site Satellite Images http://seawifs.gsfc.nasa.gov/cgi/seawifs_region_extracts.pl

SeaWiFS

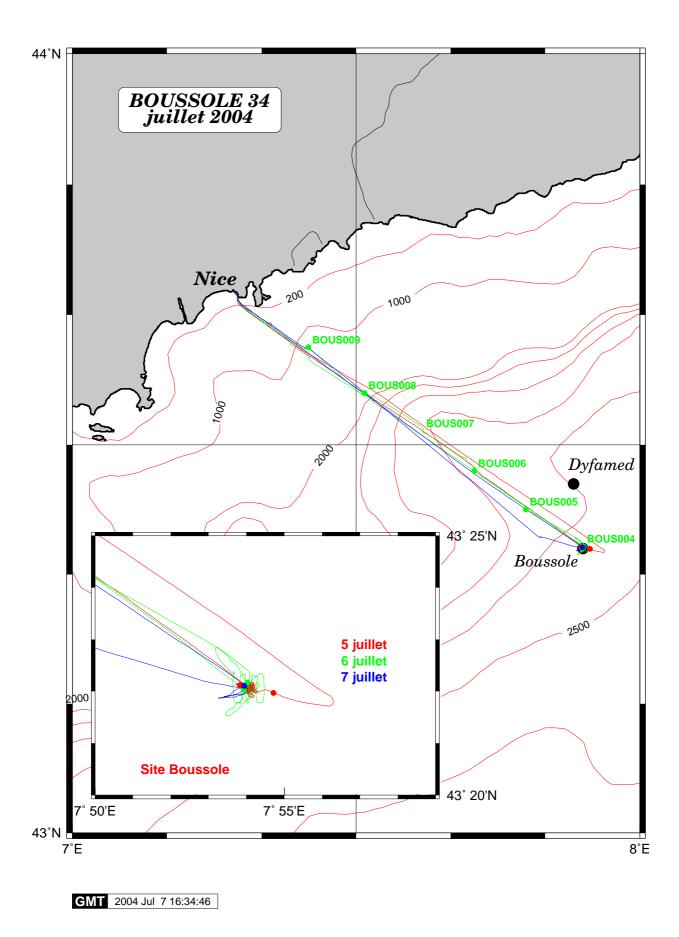



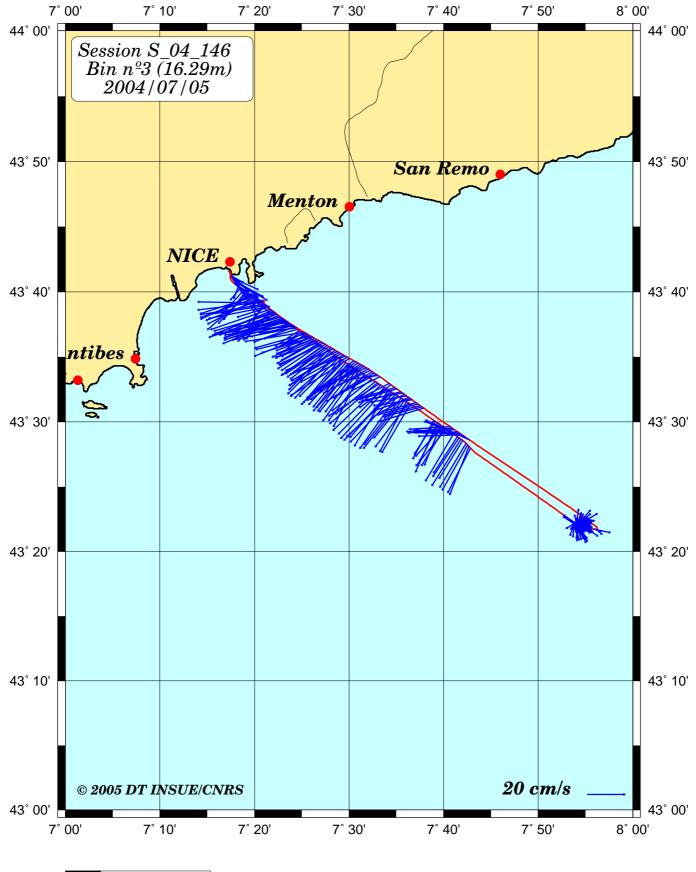

Figure 2. SeaWiFS images Level 1 hdf (upper) and Level 2 hdf (lower) images of the french coastline and Boussole site. (http://seawifs.gsfc.nasa.gov/cgi/seawifs_region_extracts)

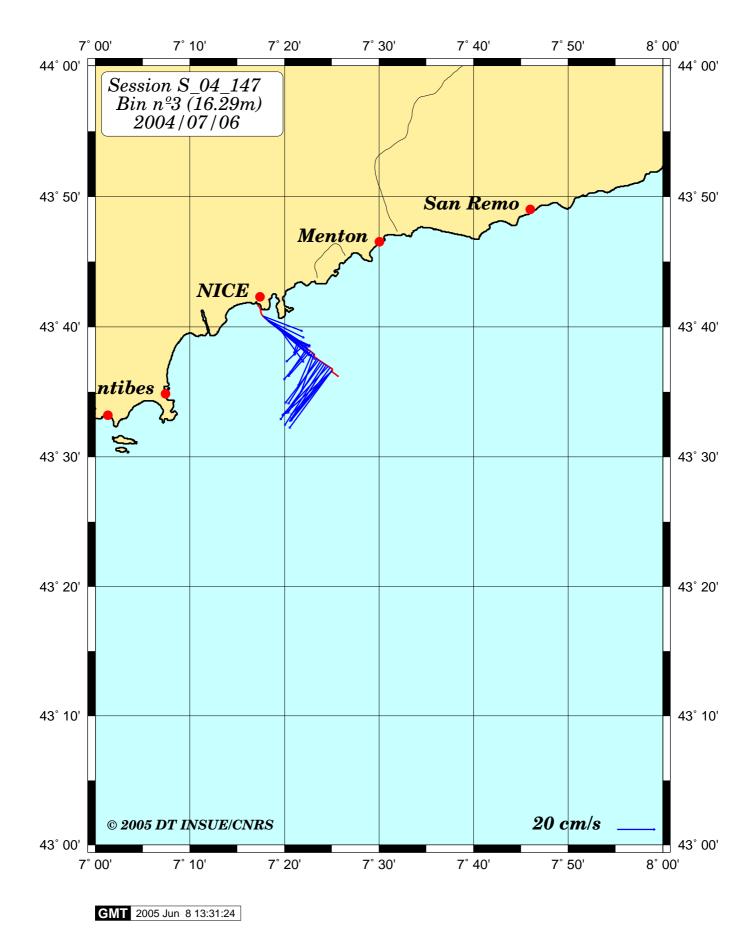

Modis

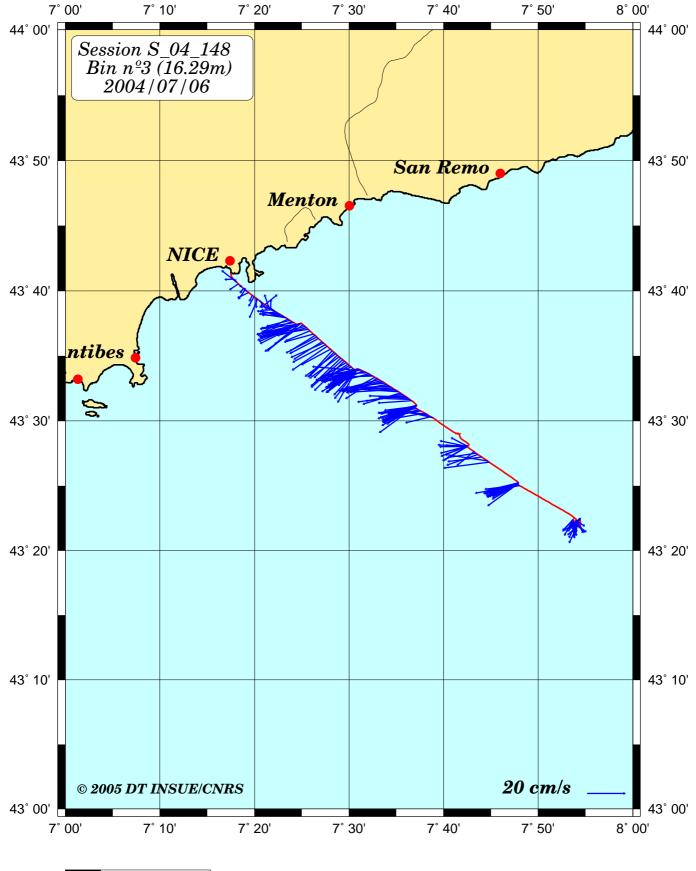
Modis images not available at time of last edit

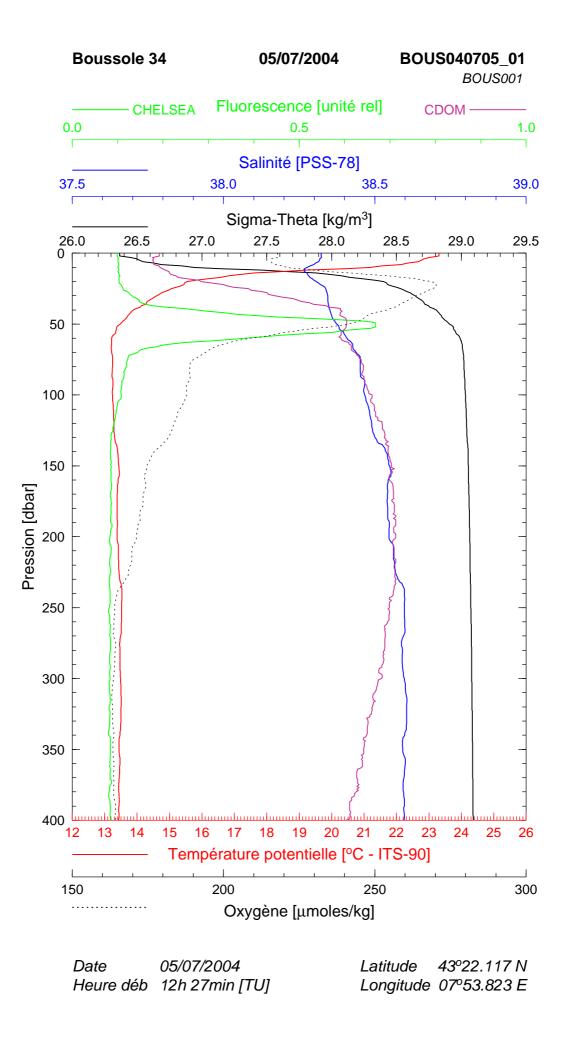
Calculated Swath paths for Modis Sensor (ESOV Software)

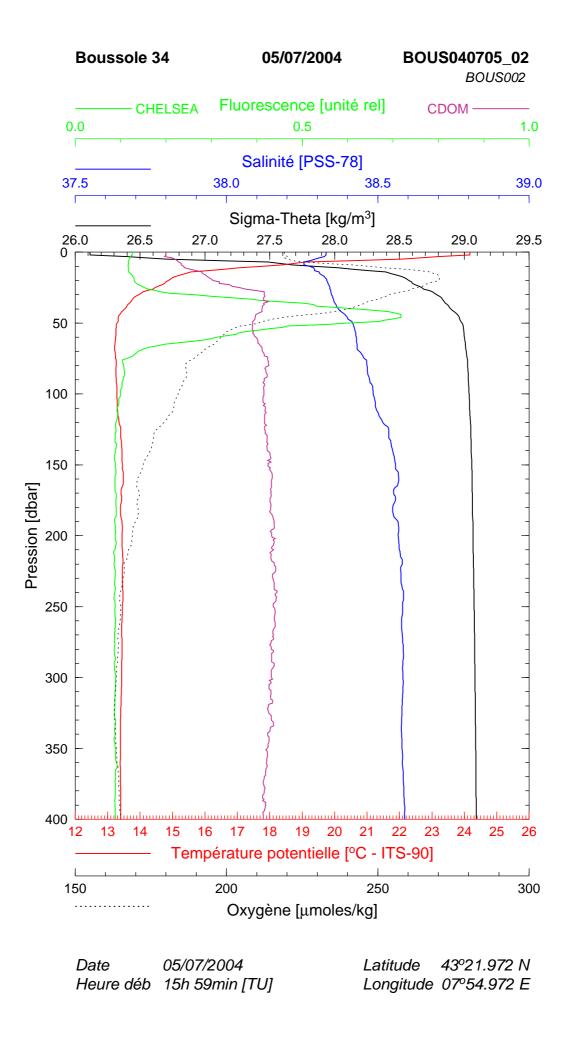


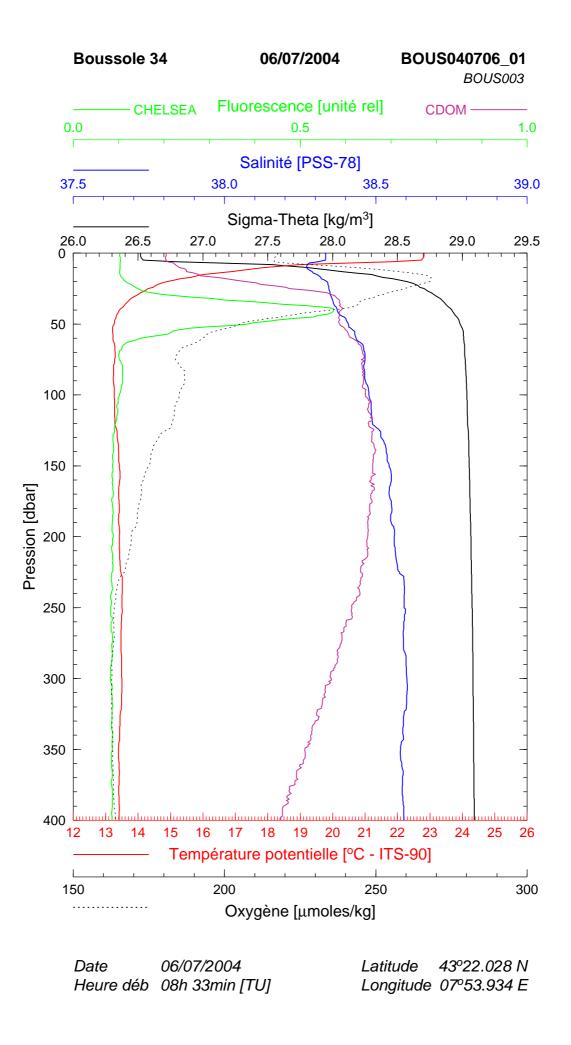


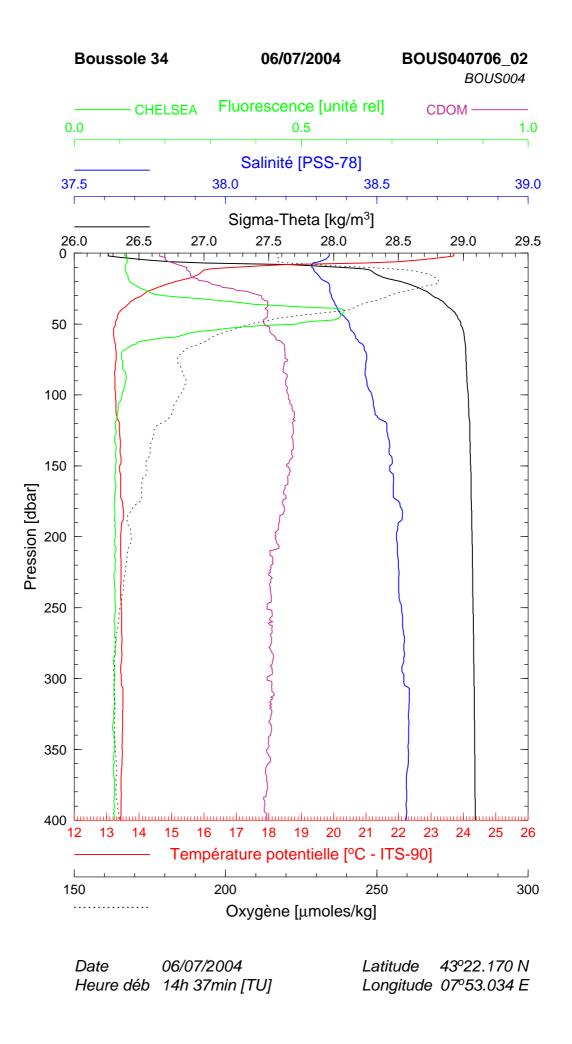

Cruise Summary Table for Boussole 34

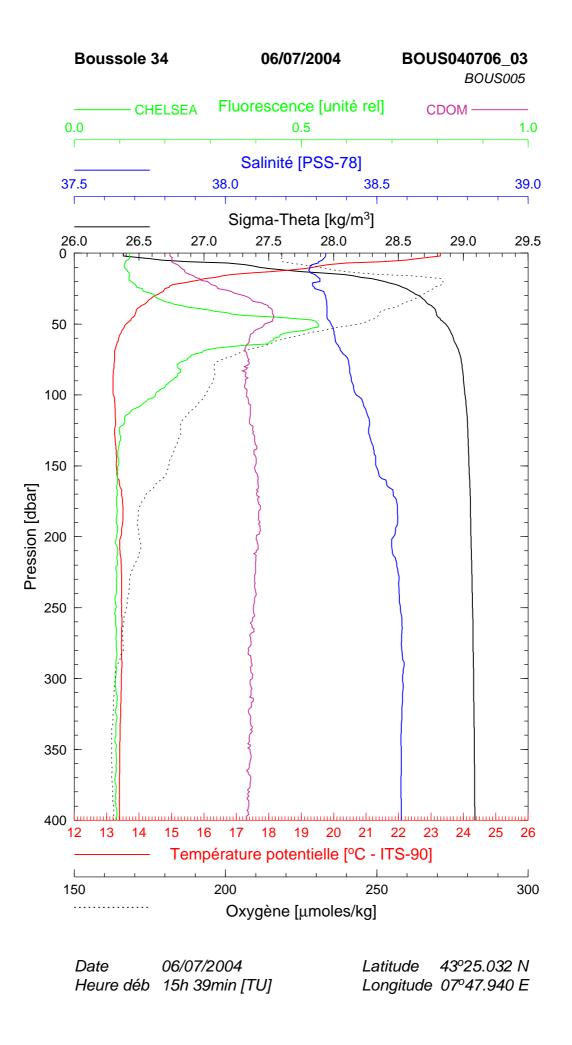

	White horses			no	no	ou			ou						ou	no			no	no	no	ou									ou	no	
	Swell dir. Wh								0						0	0			0	0	0	0									-	-	
Sea	Swell height S			0	0	0			0						0	0			0	0	0	0									0	0	
	Sea S							calm	calm		calm		calm		calm	calm			calm	calm	calm	calm					calm						choppy
	T water							23.13					22.52														23.75						22.65
	ty Tair			23.9	23.9	23.9		23.9	23.8		23.7		23.2		25	25				22.8	22.8	22.8					24.2				20	20	23.2
	y Visibility			goog	poob	poob			poob						poob	goog			good	poob	poob	poob									fair	fair	
	humidity			72	72	72		72	72		14		11		02	0/			71	14	14	14					14				82	82	62
	Atm. Pressure			1020	1020	1020		1019.5	1018.7		1018.7		1017.4		1017.5	1017.5			1016.8	1016.8	1016.8	1016.8					1015.9				1013	1013	1015.4
	Wind dir.			197	197	197		46	49		58		245		268	268			264	264	264	264					161				72	72	55
Weather	Wind speed			2	2	2		2	2		8		2		3	3			5	2	2	2					3				3	3	6
	Quantity (#/8)			0	0	0		0	e		Э		0		<1 <	<1			3	Э	Э	e					2				8	8	4
	Clouds								cirrus						fine cirrus	fine cirrus			cirrus	cirrus	cirrus	cirrus									cumulus	cumulus	
	Sky			Milky	Milky	Milky			Milky						slightly milky	slightly milky			milky	milky	milky	milky									cloudy	cloudy	
/Finish															slig	slig																	
Their cast Start/Finish																																	_
Other sensors																																	
50	(Minute)			53.979	53.953	53.881		53.823	54.333	54.496	54.713		53.934		53.529	54.153			53.308	53.89	53.762	53.553		53.665	54.044	54.416	54.034	47.94	42.504	37.009	30.872	24.948	53.945
	(Degree)			2	2	2		2	2	2	2		2		2	2			7	2	2	2		2	2	7	2	2	2	2	2	2	7
de (N)	(Minute)			22.049	22.155	22.167		22.117	22.007	22.032	21.972		22.028		21.652	22.022			22.276	22.314	22.486	22.634		22.361	21.805	22.336	22.17	25.032	27.995	31.084	33.99	37.517	22.109
Latitude (N)	(Degree)			43	43	43		43	43	43	43		43		43	43			43	43	43	43		43	43	43	43	43	43	43	43	43	43
Depth max	(meter)			220	200	200		400	150	158	400		400		200	200			200	105	200	200		5	5	5	400	400	400	400	400	400	400
Duration	(min.sec)		03:00	04:35	04:16	04:18	03:00	30:00	03:17	03:26	26:00	03:00	31:00		03:00	07:21	03:00	03:00	07:07	04:44		06:24	03:00				25:00	29:00	26:00	26:00	31:00	27:00	29:00
Start Time	GMT (hour.min)		11:04	11:31	11:42	11:51	12:14	12:27	15:31	15:41	15:59	16:00	08:33		09:17	09:47	10:02	11:58	12:13	12:25	12:36	12:53	13:20	13:30	13:54	14:14	14:37	15:39	16:41	18:06	19:21	20:28	08:48
CTD notées /	satellite overpass 0							CTDBOUS001			CTDBOUS002		CTDBOUS003											Quadrilateral001	Quadrilateral002	Quadrilateral003	CTDBOUS004	CTDBOUS005	CTDBOUS006	CTDBOUS007	CTDBOUS008	CTDBOUS009	CTDBOUS010
CTD	satellite							CTDE			CTDE		CTDE						~		-	6		Quadr.	Quadr	Quadr.	CTDE						
Profile names	(file extension: ".raw")			bou050704A	bou050704B	bou050704C			bou050704D	bou050704E					bou060704A	bou060704spmratsurface1			bou060704spmratsurface2	bou060704spmratsurface3	bou060704spmratsurface4	bou060704spmratsurface5											
Black names	(file ext: ".raw")		bou050704black1				bou050704black2					bou050704black3		bou060704black1			bou060704black2	bou060704black3					bou060704black4										
Date		05/07/04											06/07/04																				07/07/04




GMT 2005 Jun 8 13:31:08






GMT 2005 Jun 8 13:31:38



